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THREE-DIMENSIONAL SPECTRAL APPROXIMATIONS TO 
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SUMMARY 
A three-dimensional spectral algorithm for the solution of Stokes flow between eccentrically rotating 
cylinders is described. Included in the model are pressure boundary conditions at the two ends of the finite 
length cylinders and the effect of a fluid line source on the inner cylinder. A comparison of results for the load 
and couple on the inner cylinder is made with those available from lubrication theory in the absence of a line 
source. Good agreement is shown for long, short and finite journal bearings when the various geometrical 
assumptions inherent in the lubrication analysis are satisfied. 
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1. INTRODUCTION 

The journal bearing is an essential part of all internal combustion engines as a means of 
transferring the energy from the piston rods to the rotating crankshaft. It consists essentially of an 
inner cylinder (the journal), which is part of the crankshaft, and an outer cylinder (the bearing), 
which is at the end of the piston rod. In general, the two cylinders are eccentric and there is a 
lubricating film of oil separating the two surfaces. The addition of polymers to mineral 
(Newtonian) oils to minimize the variation of viscosity with temperature has the added effect of 
introducing strain-dependent viscosity and elasticity. 

The physical problem has many complicating features which need to be modelled. It is a fully 
three-dimensional problem which therefore means that significant computational effort is 
required to solve the problem numerically. A non-linear constitutive equation is required to model 
the non-Newtonian lubricant. This means that, because of the non-linear relationship between 
stress and strain, the constitutive relations cannot be used to substitute for the components of 
stress in the field equations, unlike the corresponding Newtonian situation in which the stress may 
be computed at the end of the solution process. In the non-linear problem the stress may not be 
divorced from the velocity. In three dimensions there are six components of stress, which, along 
with the pressure and three velocity components, makes 10 variables which need to be calculated. 
To account for the oil flow through the bearing, consideration must be given to the oil source. This 
is a hole or groove in the inner journal, which therefore rotates in space. In addition, the system is 
subject to severe dynamic loading and has a complicated locus in space. Also, there is significant 
deformation of the bearing and journal' and extensive cavitation of the oil lubricant. 
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The following simplifying model is used. 

1. The outer bearing is assumed stationary. 
2. The inner journal is assumed to rotate about its own centre. 
3. The oil is taken to be a Newtonian lubricant. 
4. We assume steady state conditions, i.e. the forces and couple on the journal are calculated for 

It is usual to simplify the analysis by using Reynolds’ lubrication equation suitably modified for 
the journal bearing geometry, and the further assumption of two-dimensional flow is widely used. 
We have chosen not to do this and have solved the full Stokes equations for the following two 
reasons. First, this work is the initial part of a project aimed at modelling the flow of non- 
Newtonian fluids. An extension of lubrication analysis to the nowNewtonian case was discounted 
on grounds of difficulty and lack of generality. Secondly, the results for Stokes flow are interesting 
in their own right since they highlight the effect of using a lubrication approximation and show in 
what limit there is a noticeable difference. 

Figure 1 gives the geometrical details. The following variables are defined in terms of those 
shown in the figure: D = 2RB,  c = R ,  - R ,  (the gap), E = eJc (eccentricity ratio) and H = LJ2, where 
L is the length of the bearing in the axial direction (along the z-axis). 

fixed values of rotational speed and eccentricity. 

The main components of our algorithm are now described. 

1. Results are obtained for Stokes flow, thus including terms in the governing equations which 

2. The geometry of the problem is modelled exactly by use of cylindrical bipolar co-ordinates. 
3. The three-dimensional nature is modelled by assuming periodic continuation in the axial 

are ignored in a lubrication analysis. 

direction and using a Fourier series expansion in z. 

t y  

Figure 1. Geometry of eccentric cylinder model 
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4. A primitive variable mixed method is used: i.e. a u, p, T formulation, so that the constitutive 

5 .  A spectral collocation method is used with the unknowns expanded as a tensor product of a 

6. The oil source has been modelled by a uniform line source which approximates the rotation 

equation may be easily changed for the consideration of nowNewtonian models. 

Chebyshev and two Fourier series. 

of a point source. 

2. GOVERNING EQUATIONS AND BIPOLAR CO-ORDINATES 

The following gives the general form of the continuity and momentum conservation equations for 
steady incompressible Stokes flow, where u = (u, u, w) and CT are the velocity and total (Cauchy) 
stress fields respectively: 

divu = 0, (1) 

div u = 0. (2) 
The total (Cauchy) stress may be expressed as u = - pI + T, where T is the extra stress (deviatoric 
stress) and p is the pressure. 

The constitutive equation for a Newtonian fluid is given by 

T = 2pd, (3) 

(4) 

where p is the viscosity and d is the rate-of-strain tensor defined by 

d = ~ ( V U  + VU~) .  

The cylindrical bipolar system (l, q, z) (see Figure 2) is given by 

a sin q 
y=- z = z, 

a sinh 5 x=- 
x x ( 5 )  

where x = cosh 5 + cos q and a is a constant depending on E ,  R, and R,. 
Note that for two-dimensional problems the incompressibility condition (1) may be satisfied 

identically by use of a streamfunction formulation where the pressure is eliminated to leave the 
streamfunction and three components of extra stress as the unknown variables. In three 
dimensions the problem is less tractable since a scalar streamfunction does not exist and therefore 
a primitive variable formulation is used. For a mixed formulation there are 10 independent 
variables: three velocity components, the pressure and six components of extra stress. 

For the journal bearing problem the following boundary conditions hold on the two cylindrical 
surfaces: 

u = o  on 5 =  5B, 
Q u= - -6(z)  on l = c J ,  ~ R R J  

v=QR, On 5 = 5 J ,  
w = o  on l= 51, (6) 

where Q is the flow rate for the fluid source and 6 is the delta function. The first of these statements 
enforces the no-slip condition for all the components of velocity on the outer bearing. The 
remaining three expressions give the velocity components at the inner journal first the normal 
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velocity due to the fluid source, secondly the tangential velocity due to rotation and thirdly the 
no-slip condition in the axial direction. 

The following gives the full set of Stokes equations (1H3) in terms of bipolar co-ordinates where 
x = cosh 5 + cosq and a = constant. 

The conservation-of-mass equation is 

xau  x a U  aw u . U 
-- + -- + - - -sinh l+  -sin? = 0. 
aag ad? az a a 

The three components of the equation of motion are 

The six constitutive equations are 

aw 
aZ T"" = 2p- ,  

3. SPECTRAL APPROXIMATION 

The scheme used for the numerical solution of the equations is based on spectral methods which 
are well known to give accurate results for a small number of degrees of freedom as compared with 
finite difference and finite element techniques (see Reference 3, for example). This was an 
important consideration for the ultimate aim of a full three-dimensional transient non-linear code. 

The equations are formulated in cylindrical bipolar co-ordinates (see Figure 2) and solved using 
a spectral collocation scheme with each variable expanded as a tensor product of two Fourier and 
one Chebyshev series. The programme gives the two-dimensional solution for the infinitely long 
journal as a special case and includes the effect of the fluid source for the finite bearing. The six 
extra-stress (deviatoric-stress) components are expanded independently in order to facilitate the 
extension of the scheme to elastic fluids. The solution of the resulting matrix equations gives the 
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Figure 2. Bipolar co-ordinate system 

spatial distribution of the three components of velocity, the pressure and the six components of 
extra stress. The pressure and normal extra-stress components are then integrated over the journal 
surface to obtain the load, and the tangential extra-stress component is integrated to obtain the 
torque. 

Physically, the finite journal is open to the atmosphere at both ends so that p = 0 there, and the 
flow is symmetric about the middle of the journal so that u and u are symmetric functions of z and 
w is an antisvmmetric function of z. 

To circumvent the unknown velocity fields at the free boundaries at z = k L/2, we treat the 
problem of end seepage by an artificial periodic continuation of all variables in the z-direction with 
period 2L. To conserve mass when considering the oil source, it is sufficient to introduce an infinite 
array of line sources and sinks in the periodically continued u-component which is symmetric 
about L/2. Also the u-component is symmetric about L/2 whilst the w-component is anti- 
symmetric about L/2. This leads to an odd cosine series for u and u and an odd sine series for w. 
The expansions for the components of extra stress follow from the constitutive equations. The 
components of extra stress Pz and T”‘ are sine series in z whilst the remainder are cosine series. 
This structure is totally consistent with the physical boundary conditions on the journal. 

The 10 variables are each expanded in terms of two Fourier and one modified Chebyshev series. 
The general expansion for a variable c#(& q, z )  is of the form 

where &,,,,, are expansion coefficients. The modified Chebyshev polynomials are defined on the 
interval [tB, < J ]  by a transformation from [ - 1 , 1 ]  to [rB, ( J ]  given by < = (& - CB)(x- 1)/2+ (]. 
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Because of spurious high-pressure modes,3 the pressure expansion omits the highest-order 
Chebyshev polynomial. The expansions are substituted in the differential equations and the 
orthogonality of the Fourier series in z is utilized to obtain reduced problems for each Fourier 
mode. The boundary conditions for each mode are given by the Fourier projection of the physical 
ones. Lanczos4 u-factors may be used to give a more rapidly convergent Fourier series for the delta 
function which represents the line source. This is also referred to as smoothing. Taking the general 
expansion to be 

the Fourier components of the boundary conditions are given by 

where 
a(e) = 1 

for the standard Fourier components and 

(13) 

when Lanczos smoothing is used. The smoothing function a(@ in (14) is a non-negative function 
on [-n,n] with a(@-1 for le l -0 and a(O)+O as 181-n. 

For the velocity components this gives, when u(0) = 1, 

U" = 0 on t= tB,  (15) 

on t =  t,, n odd, 

iin= 0 on t=  tl, n even, 

on t =  &, n odd, - 4RRJ (n-  1)/2 u,= -( - 1) 
nn 

fin= 0 on t= tl, n even, (19) 

G,=O on 5 = 5 , .  (20) 
The problem for each Fourier z-mode is collocated to give an algebraic system of equations for 

the unknown expansion coefficients. The collocation points are spaced linearly in the circum- 
ferential direction (qj  = 2nj/(M + l), 0 < j < M). In the radial direction the collocation points are 
located at the extrema (xi = cos(nj/K), 0 < j  < K) or zeros (xi = cos [n(j + i ) / K ] ,  O < j  < K - 1) of 
the Chebyshev polynomial of highest degree used in the expansion. These sets of points are known 
as the Gauss-Lobatto-Chebyshev and Gauss-Chebyshev points respectively. In a collocation 
method the choice of collocation points is crucial. In spectral methods they are always chosen to 
be the nodes of a Gaussian quadrature rule for two reasons. First, the Lagrange interpolating 
polynomial which interpolates the data at these nodes possesses good approximating properties. 
Secondly, for linear problems the collocation method may be shown to be equivalent to a 
variational formulation of the problem when the same quadrature rule is used to approximate the 
integrals appearing in this formulation. Following Canuto et al.,3 the continuity and momentum 
equations are collocated at the Gauss-Chebyshev and interior Gauss-Lobatto-Chebyshev points 
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respectively. If the continuity and momentum equations are both collocated at the 
Gauss-Lobatto-Chebyshev points, then the linear system for the expansion coefficients is 
underdetermined. The velocity boundary conditions are collocated at the extreme 
Gauss-Lobatto-Chebyshev points. In addition, the constitutive equations are collocated at all the 
Gauss-Lobatto-Chebyshev points. 

For the long (2D) bearing calculation (n = 0) the pressure mode hooo represents the mean value 
of the pressure and has no effect upon the velocity since its gradient vanishes. It is introduced into 
the modified continuity equation 

divu = hooo (21) 
to balance the number of unknowns and collocation points. This avoids the ill-defined and 
apparently highly sensitive alternative of not collocating one of the equations at a chosen point. 
Integrating (21) over the interior of the journal bearing and using the divergence theorem on the 
left-hand side of (21), we can show that the volume integral of poo0 is zero, from which it follows 
that hoo0 is identically zero. 

The matrix equation for each z-component subproblem is solved by a direct method using the 
NAG routine F04ADF which uses Crout's factorization followed by back-substitution. 

After solving the system, the load F and torque C on the journal may be calculated as 

where i? and are the unit vectors normal and tangential to the journal. Expressing the integrals in 
terms of bipolar co-ordinates and transforming the forces to Cartesian components gives 

)a dqdz, (24) 
1 + cosh tJ cos q + ~, sinh lJ sin q 

F ,  = - j H  ( (Tcr - p)J 
- H  0 X J  

wheref; -f(tJ, q, z). The expansions are substituted in the integrals, which are then calculated 
analytically using contour integration. The details are given in Appendix I. 

4. LUBRICATION THEORY 

Results from the Stokes flow calculations without the inclusion of the line source (Q = 0) are 
compared with those from lubrication theory for full film conditions. When the gap is small 
compared with other dimensions, it is possible to perform an order-of-magnitude analysis on the 
full Navier-Stokes equation. This results in Reynolds' equation when small terms are ignored. The 
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analysis neglects inertial terms, so that lubrication theory flow is a Stokes flow with further 
simplifying assumptions. 

4.1. Finite bearing 

The standard form of Reynolds’ equation is 

where p, h and p are the pressure, film thickness and viscosity of the lubricant respectively and U is 
the relative velocity of bearing surfaces. 

In journal bearings, y and z are taken along the circumferential and axial directions respectively. 
Note that the pressure is assumed constant across the gap, i.e. aplax = 0. For the journal bearing, 
if y = Rje, the height of the gap is approximated by h = c(l + Ecos O), which is sufficiently accurate 
if c/R, 4 1. 

Omitting the subscript for Rj,  introducing dimensionless variables 8 = y / R ,  Z = z/2L and 
noting that U = ClR, Reynolds’ equation becomes 

(29) 
z ( ( l + & c o ~ e ) ~ E )  + = -6pRR2-sin8. E 

ae ae C2 

The boundary conditions on P are 

a p  a p  
-( - 71, Z )  = -(71, Z),  ae ae P (  - 71, Z )  = P(., Z) ,  

P(e, 1) = 0, p(e,  - 1) = 0. (31) 
The Cartesian components F ,  and F ,  of the load and the torque C on the journal are given by 

F ,  = lH f n  pcos 6 Rdedz, 

F ,  = s” rx  psin 8 Rdedz, 

- H  0 

- H  0 
(33) 

Note that the pressure gradient terms are retained in both the circumferential and axial 
directions. Tao5 obtained an analytical solution using Heun functions. There are several 
numerical solutions-a finite difference technique is used by Cameron6 and Tanner7 uses a 
Galerkin method. 

We use a pseudospectal collocation solution scheme where the pressure is expanded as the 
tensor product of a Fourier series in 8 and a Chebyshev series in Z, i.e. 

where @,, are expansion coefficients. The collocation points are spaced linearly in the circum- 
ferential direction (ej = 271j/M, 0 < j  < M - 1) and at the Gauss-Lobatto-Chebyshev points in the 
axial direction (Zj = cos(nj/N), 0 <j  < N). The expansion for p automatically satisfies the periodic 
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boundary conditions (30). The differential equation (29) is collocated at the internal 
Gauss-Lobatto-Chebyshev points and the zero-pressure boundary condition (31) is collocated at 
the extreme Gauss-Lobatto-Chebyshev points. The resulting algebraic system is solved using a 
direct method to give the values of the pressure field at the collocation points. The load F and 
torque C on the journal may then be calculated by substituting the expansion for pressure 
in (32H34).  The details are given in Appendix 11. 

4.2. Long bearing 

Assume that the effect of the side boundary conditions is negligible and that the flow is two- 
dimensional. The pressure distribution obtained from this approximation is accurate only for the 
central plane of a real bearing with LID 3 5.  When ap/aZ is neglected, Reynolds’ equation can be 
solved analytically to give 

4.3. Short bearing 

Assume that the side boundary conditions give rise to a much larger pressure gradient than that 
due to the rotation of the journal. Results are fairly accurate for LID < 1/5. If ap/af? is neglected, 
Reynolds’ equation can again be solved analytically to give 

F,= 0, (41) 

(43) 
2npLR R Fy e 

c=cJo+2. 

5. RESULTS WITHOUT FLUID SOURCE 

Results are presented for values of the expansion parameters in (10) of K = M = 8, N = 7. Higher 
values of these parameters were used and essentially similar values of the load and torque were 
obtained, which shows that the numerical solution has converged with mesh refinement. 

We concentrate on a bearing of typical size under typical conditions: 

i2 = 250 rads-’ (x 2500 rpm) 
D = 623 mm (2-5 in) 
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L I D  = 10, 5, 2.5, 1, 0.5, 0.1 

(L=625, . . . ,6.25 mm) 

c= 0.4 mm (0.01575 in) 

E =  0.1, 0.2, . . . , 09,095,099 

(e=  0.04,0.08, . . . ,036,0.38,0395 mm) 

p =  5 mPas. 

Note that c /D  z 1/160 so that lubrication theory should give accurate results for Newtonian 
flows. The axial length L was varied to give values of L I D  between 10/1 and 1/10, and e was varied 
to give eccentricities E = e /c  between 0.1 and 099. The different eccentricities give rise to shear 
rates of j z 2.6 x lo4 s-' for ~ = 0 . 1  and f z 1.6 x lo6 s - l  for ~=0.99.  

The Stokes solutions give F, = 0 and F,=O, as for lubrication theory. 
Tables 1-111 give the values for normal load F y  and torque C given by the 3D Stokes solution, 

finite lubrication theory, short bearing approximation and long bearing approximation for L I D  
ratios of 1/10,1/1 and 10/1 respectively. Comparison of results from the 2D Stokes solution with 
those given by the long bearing lubrication approximation shows very close agreement for all 
eccentricities, so the Stokes 2D results are not tabulated. 

The calculation of F y  for the 3D Stokes solution (25) includes the extra-stress components. 
This has negligible effect when L I D  2 1/5, but has increasing influence for short bearings. For 
L I D  = 1/10, Table I shows two values of F y  for the 3D Stokes solution: Fr(total) is calculated by 
(25) whereas Fy (pressure) is calculated by integrating the pressure only. The values of F y  (pressure) 
agree with those given by finite lubrication theory, but F y  (total) is less for small eccentricities and 
bigger for large eccentricities. 

For L I D  = lO/l, Table 111 shows that the long lubrication approximation gives good results for 
all eccentricities. Likewise, for L I D  = 1/10 the short lubrication approximation gives good results 
except when E 2 095, when F y  is overestimated. As was expected, the short and long lubrication 
approximations were found to be accurate only for L I D  < 1/5 and L I D  2 5/1 respectively. 

Figure 3 shows the pressure distribution within the annulus for the case L I D  = 1/10 and E = 0.9. 
The pressure field is symmetrical about the line joining the centres of the cylinders, which therefore 
gives a load on the journal in the vertical direction. 

Figure 4 shows the circumferential velocity for the case L I D  = 1/10 and ~ = 0 . 9 .  This shows 
recirculation regions in the area of largest gap which cannot be predicted by lubrication theory, 
but agrees with previous results for Stokes flow.8 

Numerical experiments showed that discrepancies arise between the lubrication and Stokes 
results for increasing values of c/R, which is to be expected since the lubrication theory assumes 
clR < 1. 

6. EFFECT O F  FLUID SOURCE 

An estimated value for the flow rate of fluid through the journal bearing of 5 x m3 s - l  has 
been taken from the literature. When this source strength is distributed around the journal, a large 
pressure is produced in the region of smallest gap. Although F y  remains the same as in the 
sourceless case, Fx is no longer zero and is comparable in magnitude to Fr (see Table IV). 
Therefore both the magnitude and direction of the total load are substantially modified. This is 
not physically realistic since it means that fluid enters via the oil hole even at regions of high 
pressure within the annulus. 
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Figure 3. Pressure distribution (Pa) for LID = 1/10, E = 0.9 

Figure 4. Circumferential velocity (ms-') for LID = 1/10, E = 09 

We therefore decided to vary the strength of the line source about the journal so that it becomes 
a function of the circumferential co-ordinate, whilst still maintaining the correct total source 
strength Q. Specifically, a distribution is chosen so that fluid enters the bearing only at regions of 
negative pressure as calculated in the sourceless case. Again this creates a non-physical situation as 
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Table IV. Results for LID = 10/1 with oil source 

Stokes flow with source 

E C 

01  
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.35 x lo - '  039 x lo-' 0.38 x lo-' 
0.76 x lo-' 084 x lo - '  0.39 x lo-' 
0.13 x l o - '  0 1 4 ~  l o - '  0 . 4 0 ~  lo-' 
0.21 x l o - '  0.23 x l o - '  0.41 x lo- '  
0.34 x lo-' 037 x 10- 0.43 x lo- '  
0.60 x l o - '  062 x l o - '  0.47 x lo-' 
0.12 x 10' 0.11 x 10' 0.52 x lo - '  
0.32 x 10' 0.24 x 10' 0.62 x lo- '  
0.17 x 10' 079 x 10' 0.85 x lo - '  

the pressure field is modified and areas of high pressure are built up around the source region. 
Other source distributions give similar results. This suggests that accurate modelling of the source 
will require an iterative scheme to deal with the interaction between the source and the pressure 
field. A more realistic model will be incorporated into future work. 

7. DISCUSSION AND CONCLUSIONS 

The work described in this paper is the first three-dimensional spectral solution to the Stokes flow 
problem for the journal bearing. A bipolar co-ordinate system is used to map the eccentric annulus 
onto a rectangular domain. To avoid the complication of free boundaries at the ends of the 
journal, all variables are periodically continued in the axial direction. The spectral discretization 
consists of expanding each variable as a triple tensor product of a Chebyshev series in the radial 
direction and Fourier series in both the circumferential and axial directions. The effect of an oil 
hole source in the journal is modelled by assuming a line source and specifying a suitable 
boundary condition on the radial velocity at the midpoint of the journal. To ensure conservation 
of mass, we periodically continue the source in terms of an infinite array of sources and sinks 
located along the axial direction. 

In the absence of an oil source, results from the Stokes spectral solution are compared with 
those from lubrication theory. Good agreement is shown for those cases when the assumptions 
inherent in lubrication theory are satisfied. We also observed a recirculation region for the velocity 
field in the case of high eccentricity. This cannot be predicted by lubrication theory, but agrees 
with previous results for Stokes flow.' We therefore conclude that the formulation of the equations 
and the numerical methods are correct. 

Inclusion of the fluid source is also a new feature, although physically meaningful results are not 
possible using the linear steady state scheme as reported in this paper. The accurate modelling of 
the source requires an iterative scheme in order to ensure that flow from the oil hole occurs only 
within regions where the pressure is below a certain threshold. A more realistic model for the 
fluid source will be incorporated into a time-dependent algorithm which will deal with the 
source-pressure interaction in a natural way at each time increment. 

Work is proceeding on extending the analysis to the transient flow of non-Newtonian fluids. 
The proposed numerical scheme will use a pseudospectral discretization in space allied to a time- 
splitting projection method,' suitably extended for use in the non-Newtonian case. A preliminary 
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version of the time-dependent code is complete and is designed to cater for the generalized 
Newtonian, White-Metzner and IJ, rheological models. The generalized Newtonian model will 
allow modelling of the shear-thinning behaviour of oils, which has a strong influence on the load- 
bearing characteristics of journal bearings. The White-Metzner model includes elasticity and 
variable viscosity. The tension-stiffening inelastic IJ, modello will permit the isolation of effects 
due to shear and extensional viscosity. This will therefore clarify the role of extensional viscosity in 
bearing performance, an effect which has been the subject of debate for several years. 
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APPENDIX I: CALCULATION OF LOAD AND TORQUE FOR STOKES FLOW 

The Cartesian components of the load and torque on the journal are given by (24H27). After 
substituting the field variable expansions (lo), it is found that calculation of the load involves 
integrals of the form 

wheref(q) is one of 
I l7 

and those for the torque involve 

The component Tz5 is a sine series in z, which gives F, = 0. 
The integrals of the components of the cosine series are given by 

n = 0, 

s :Hcos(F)dz = [ tL/(nn)(-l)(n-lJ/z, n odd, 
0, otherwise. 

Integration with respect to q may be performed by contour integration using the substitution 
c = exp(iq). The expressions for F involve integrals of the form 

r rm 

and those for C involve , 

where cl = - coshc, - ,/(coshZ tJ - 1) and rz = - COSh tJ + J(coshZ tJ - 1). By using the substi- 
tution o = l/C, it may be seen that I, = IImI + 2 ,  m < O  and J ,  = Jl,,, m < 0. The integrals have 
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single or double poles on the real axis at 5 = rl and 5 = c2. We have that cosht > 1, so that 
is outside. The integrals 

are then calculated using Cauchy’s residue theorem with only the poles at c = c2 contributing. 
< - 1 and - 1 < c2 < 1; thus cz lies within the unit circle whereas 

APPENDIX 11: CALCULATION OF LOAD FOR FINITE LUBRICATION THEORY 

The Cartesian components of force on the journal are given by (32) and (33). After substituting in 
the expansion for pressure, the integrals become 

cos 8 { F x  ] = 
f P,, s’ T’,(Z) dZ s:’ exp(im0) { sin 0 ] R do. Fy m = - M / Z n = O  - 1  

The integrals may easily be calculated using the following standard expressions for the integrals of 
Chebyshev polynomials: 

1 {; 2/(nZ - I), n even, s- 1 n odd. 
T,(Z)dZ = 
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